2 resultados para saliva level

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Orthodontic tooth movement uses mechanical forces that result in inflammation in the first days. Myeloperoxidase (MPO) is an enzyme found in polymorphonuclear neutrophil (PMN) granules, and it is used to estimate the number of PMN granules in tissues. So far, MPO has not been used to study the inflammatory alterations after the application of orthodontic tooth movement forces. The aim of this study was to determine MPO activity in the gingival crevicular fluid (GCF) and saliva (whole stimulated saliva) of orthodontic patients at different time points after fixed appliance activation. Methods: MPO was determined in the GCF and collected by means of periopaper from the saliva of 14 patients with orthodontic fixed appliances. GCF and saliva samples were collected at baseline, 2 hours, and 7 and 14 days after application of the orthodontic force. Results: Mean MPO activity was increased in both the GCF and saliva of orthodontic patients at 2 hours after appliance activation (P<0.02 for all comparisons). At 2 hours, PMN infiltration into the periodontal ligament from the orthodontic force probably results in the increased MPO level observed at this time point. Conclusions: MPO might be a good marker to assess inflammation in orthodontic movement; it deserves further studies in orthodontic therapy. (Am J Orthod Dentofacial Orthop 2010;138:613-6)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of the study was to evaluate saliva flow rate, buffer capacity, pH levels, and dental caries experience (DCE) in autistic individuals, comparing the results with a control group (CG). The study was performed on 25 noninstitutionalized autistic boys, divided in two groups. G1 composed of ten children, ages 3-8. G2 composed of 15 adolescents ages 9-13. The CG was composed of 25 healthy boys, randomly selected and also divided in two groups: CG3 composed of 14 children ages 4-8, and CG4 composed of 11 adolescents ages 9-14. Whole saliva was collected under slight suction, and pH and buffer capacity were determined using a digital pHmeter. Buffer capacity was measured by titration using 0.01 N HCl, and the flow rate expressed in ml/min, and the DCE was expressed by decayed, missing, and filled teeth (permanent dentition [DMFT] and primary dentition [dmft]). Data were plotted and submitted to nonparametric (Kruskal-Wallis) and parametric (Student`s t test) statistical tests with a significance level less than 0.05. When comparing G1 and CG3, groups did not differ in flow rate, pH levels, buffer capacity, or DMFT. Groups G2 and CG4 differ significantly in pH (p = 0.007) and pHi = 7.0 (p = 0.001), with lower scores for G2. In autistic individuals aged 3-8 and 9-13, medicated or not, there was no significant statistical difference in flow rate, pH, and buffer capacity. The comparison of DCE among autistic children and CG children with deciduous (dmft) and mixed/permanent decayed, missing, and filled teeth (DMFT) did not show statistical difference (p = 0.743). Data suggest that autistic individuals have neither a higher flow rate nor a better buffer capacity. Similar DCE was observed in both groups studied.